Generative artificial intelligence models have been used to create enormous libraries of theoretical materials that could help solve all kinds of problems. Now, scientists just have to figure out how to make them. In many cases, materials synthesis is not as simple as following a recipe in the kitchen. Factors like the temperature and length of processing can yield huge changes in a material's properties that make or break its performance. That has limited researchers' ability to test millions of promising model-generated materials. Now, MIT researchers have created an AI model that guides scientists through the process of making materials by suggesting promising synthesis routes. In a new paper, they showed the model delivers state-of-the-art accuracy in predicting effective synthesis pathways for a class of materials called zeolites, which could be used to improve catalysis, absorption, and ion exchange processes. Following its suggestions, the team synthesized a new zeolite...
learn more